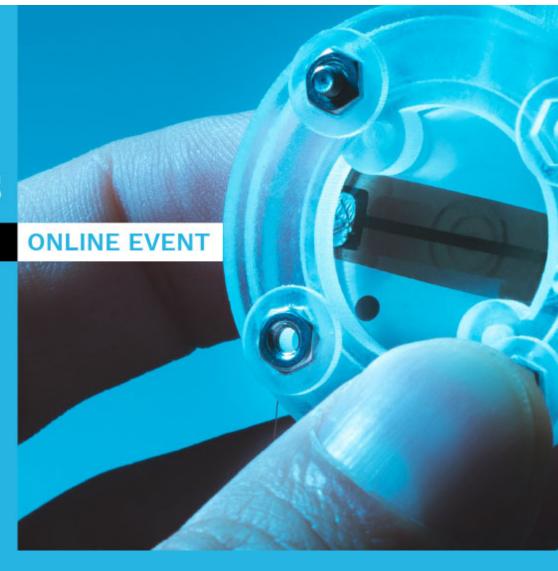
ASSIST

Smart valves based on active soft materials

Project results and exploitation perspectives

15 October 2021 14:30 (CET)

Partners



WELCOME AND INTRODUCTION Paolo Milani, Università degli Studi di Milano

CHALLENGES IN MEDICAL TECHNOLOGIES FOR HOME HEALTHCARE

The **demand for home healthcare** is boosted by:

- aging of world population
- increase in disabling health conditions caused by chronic diseases (e.g. obesity and diabetes)

Development of fluidic medical technologies able to:

- enhance functioning and autonomy in home healthcare practices
- promote flexibility to patients with small size-machines

Delay in technical evolution towards market's needs:

- use of complex fluidic circuits and electronics
- miniaturization and power savings limited by the use of traditional bulky technology
- lack of fluid control integration in pumps moving parts and valves

ASSIST – SMART VALVES BASED ON ACTIVE SOFT MATERIALS

Realization of an industrial process for the fabrication of innovative smart valves with embedded pressure sensors based on active soft nanocomposite materials

Key enabling technology:

Supersonic Cluster Beam Implantation (SCBI)

High-sensitivity strain gauges based on polymer/metal nanocomposites

Portable smart valves providing high flow, precise fluid control and miniaturization at sustainable costs

Capacity building:

Industrial research through knowledge exchange
High-level inter-sectorial and inter-disciplinary research and training