ASSIST

Smart valves based on active soft materials

Project results and exploitation perspectives

15 October 2021 14:30 (CET)

"Supersonic Cluster Beam Fabrication of Active Soft Nanocomposites"

Lorenzo Migliorini, Ph. D.

Post Doctoral Researcher, University of Milan (IT)

SOFT ELECTRONICS AND SENSORS

CONDUCTIVE SPECIES

Electron conduction Hardness

Metallic atoms
Metallic Nanoparticles
Carbon Nanotubes
Graphene
Conductive polymers

COMMON FABRICATION TECHNIQUES

Physical techniques (e.g. vapour deposition)
Printing of conductive inks

SOFT POLYMERIC MATERIALS

Softness
Deformability
Compliancy

Rubbers
Elastomers
Thermoplastics
Gels
Biological tissues
Cellulose-derivatives

SOFT ELECTRONICS AND SENSORS

CONDUCTIVE SPECIES

Electron conduction Hardness

Metallic atoms Metallic Nanoparticles Carbon Nanotubes Graphene derivatives Conductive polymers

COMMON FABRICATION TECHNIQUES

Physical techniques (e.g. vapour deposition) Printing of conductive inks

SOFT ELECTRONICS DEVICES and APPLICATIONS

SOFT ACTUATORS

ENERGY DEVICES

WEARABLE

ELECTRONICS

COMPUTING ELEMENTS

BIOMEDICINE

SENSORS AND BIOSENSORS

SMART FARMING AND AGRICUITURE

SOFT POLYMERIC MATERIALS

Softness **D**eformability Compliancy

Rubbers Elastomers **Thermoplastics** Gels Biological tissues Cellulose-derivatives

SUPERSONIC CLUSTER BEAM MPLANTATION

1) Neutral clusters generated by an inert gas plasma from a solid conductive precursor.

2) Supersonic expansion of the gas beam and size selection of the clusters (3-10 nm).

3) Deposition of cluster-assembled layers
(from few to hundreds of nm)
on the target substrate.

Wegner et al., J. Phys. D. Appl. Phys., 2006 Ghisleri et al., J. Phys. D. Appl. Phys., 2014

SUPERSONIC CLUSTER BEAM IMPLANTATION

GOAL OF THE ASSIST PROJECT

SMART FLUIDIC VALVES based on a NANOCOMPOSITE STRAIN-SENSITIVE MEMBRANE

POSITIVE STRAIN

- 1. Custom-designed elastomer membrane
 - 2. Metallization with SCBI
 - 3. On-line employment in a fluidic channel

UNIMI ACTIVITY

1) SELECTION OF THE ELASTOMER MATERIAL

2) IDENTIFICATION OF THE CONDUCTIVE SPECIE AND THE DEPOSITION PROTOCOL

3) FABRICATION OF THE NANOCOMPOSITE SAMPLES

2 OBJECTIVES

- a) Production of <u>dumbbell samples</u> for tensile electro-mechanical tests \rightarrow Modelling
- b) <u>Metallization of custom membranes</u> to test their sensitivity at different pressure values in a real fluidic system

SUCCESSFUL PROTOCOL

1) IDENTIFICATION OF THE **ELASTOMER**MATERIAL

2) Au-CARBON DOUBLE LAYER

The porous carbon layer is filed by the conductive Au clusters

SOFT CONTACTS and SEALING

PCB

Silver paint

Elastomeric sealing agent

DUMBBELL FOR TENSILE TESTS AT POLIMI

— 100 μm

SENSORIZED MEMBRANES FOR PRESSURE TESTS

Au clusters deposition/implantation

— 100 μm

"Supersonic Cluster Beam Fabrication of Active Soft Nanocomposites"

THANKS TO ALL THE PARTNERS AND THE FINANCERS

UNIMI and CIMalNa

Paolo Milani
Tommaso Santaniello
Paolo Piseri
Lorenzo Migliorini
Claudio Piazzoni
Sara Moon Villa
Marco Piazzoni